Combinatorial Categorical Equivalences

نویسنده

  • STEPHEN LACK
چکیده

In this paper we prove a class of equivalences of additive functor categories that are relevant to enumerative combinatorics, representation theory, and homotopy theory. Let X denote an additive category with finite direct sums and splitting idempotents. The class includes (a) the Dold-Puppe-Kan theorem that simplicial objects in X are equivalent to chain complexes in X ; (b) the observation of Church-Ellenberg-Farb that X -valued species are equivalent to X -valued functors from the category of finite sets and injective partial functions; (c) a DoldKan-type result of Pirashvili concerning Segal’s category Γ; and so on. We provide a construction which produces further examples.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Accessibility Rank of Weak Equivalences

We study the accessibility properties of trivial cofibrations and weak equivalences in a combinatorial model category and prove an estimate for the accessibility rank of weak equivalences. In particular, we show that the class of weak equivalences between simplicial sets is finitely accessible.

متن کامل

DERIVED EQUIVALENCES FOR COTANGENT BUNDLES OF GRASSMANNIANS VIA CATEGORICAL sl2 ACTIONS

We construct an equivalence of categories from a strong categorical sl(2) action, following the work of Chuang-Rouquier. As an application, we give an explicit, natural equivalence between the derived categories of coherent sheaves on cotangent bundles to complementary Grassmannians.

متن کامل

DERIVED EQUIVALENCES FOR COTANGENT BUNDLES OF GRASSMANNIANS FROM CATEGORICAL sl2 ACTIONS

We construct an equivalence of categories from a strong categorical sl(2) action, following the work of Chuang-Rouquier. As an application, we answer a question of Namikawa and give an explicit equivalence of categories between coherent sheaves on cotangent bundles to complementary Grassmannians.

متن کامل

Categorical Combinators

Our main aim is to present the connection between 2-calculus and Cartesian closed categories both in an untyped and purely syntactic setting. More specifically we establish a syntactic equivalence theorem between what we call categorical com-binatory logic and j-calculus with explicit products and projections, with fl and q-rules as well as with surjective pairing. "Combinatory logic" is of cou...

متن کامل

Completions of Pro-spaces

For every ring R, we present a pair of model structures on the category of pro-spaces. In the first, the weak equivalences are detected by cohomology with coefficients in R. In the second, the weak equivalences are detected by cohomology with coefficients in all R-modules (or equivalently by pro-homology with coefficients in R). In the second model structure, fibrant replacement is essentially ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014